• Registro
Foro de preguntas y respuestas de matemáticas, de cualquier nivel. Cuánto más interesantes, divertidas o intrépidas, mejor.
Aviso: Te invitamos a conocer la página de Facebook de la UCIM

Ganas puntos al hacer preguntas, contestarlas y, sobre todo, si tu respuesta es seleccionada como la mejor.
Registrate como usuario para participar en el foro. También puedes utilizar tu identidad de FB Utiliza el botón azul para ingresar (si usas tu identidad de FB y estás logeado en FB, automáticamente te reconoce).

El irracional tiene una página en FB. El Irracional






¿Qué tan "esencial" es el nudo de trébol en la teoría de nudos?

+3 votos
Hace poco alguien observaba que si el grupo fundamental del círculo fuese trivial, no habría necesidad de estudiar el grupo fundamental de otros espacios puesto que éste siempre sería trivial. Esto hace al círculo "esencial" para estudiar este tipo de invariantes topológicos. Pensando en los mismos términos, mi pregunta es: si el nudo de trébol pudiera hacerse isotópico a al nudo trivial, ¿cualquier otro nudo sería isotópico al trivial?
preguntado por Mauricio (1,070 puntos) Sep 3, 2013 en Preguntas

1 Respuesta

+1 voto

No. Las listas de nudos que puedes encontrar por toda la red son siempre listas de nudos primos; es decir, nudos que no son suma de dos nudos no triviales. La suma de dos nudos se define atando una copia suficientemente pequeña del primer nudo en un segmento suficientemente pequeño del segundo (aqui, "suficientemente" quiere decir que no se creen cruces extras). Lo que tu pides es que todo nudo fuera suma de tréboles, en cuyo caso la teoría de nudos sería bastante aburrida.

Actualización: (en respuesta al comentario de Maurico) Si entiendo correctamente, lo que quieres es que si en tu nudo se puede aislar un segmento con un nudo trebol, entonces lo puedes hacer desaparecer. La cuestión esta en definir "aislar". Comunmente se entiende que el trebolito no se enlaza con otros segmentos del nudo grande. Si éste es el caso, lo que dije arriba es la solución a tu problema. Por definición, un nudo primo no tiene trebolitos.

Pero si aceptas trebolitos entrelazados como abajo, entonces se pone mas complicado. Ahí tienes un nudo primo que consiste de dos trebolitos entrelazados. Si puedes hacerlos desaparecer, entonces este nudo (llamado $8_5$) se hace trivial. El problema es que ésta transformación de nudos no preserva la información del entrelazamiento de los trebolitos, y por lo tanto no creo que sea una noción que le interese mucho a los nudistas.

respondido por Rodrigo Pérez (10,010 puntos) Sep 3, 2013
editado por Rodrigo Pérez Sep 6, 2013
Tomando la hipótesis de la pregunta, ¿cómo concluyes que los nudos primos no serían isotópicos al trivial?
Licencia Creative Commons
Este obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 2.5 México.

powered by UCIM

...