• Registro
Foro de preguntas y respuestas de matemáticas, de cualquier nivel. Cuánto más interesantes, divertidas o intrépidas, mejor.
Aviso: Te invitamos a conocer la página de Facebook de la UCIM

Ganas puntos al hacer preguntas, contestarlas y, sobre todo, si tu respuesta es seleccionada como la mejor.
Registrate como usuario para participar en el foro. También puedes utilizar tu identidad de FB Utiliza el botón azul para ingresar (si usas tu identidad de FB y estás logeado en FB, automáticamente te reconoce).

El irracional tiene una página en FB. El Irracional






¿Cómo demostrar que la medida del área tiende a infinito?

+1 voto

Se considera la función $y = 4 - x^2$ en el primer cuadrante. Debo hallar un punto $A = (x_0, y_0)$ tal que sea tangente a la curva y además el área del triángulo (como en la figura) sea máxima. 

¿Qué he pensado? Pues que cuando $x_0$ tiende a cero, o sea, cuando el punto $A$ lo recorro hacía la izquierda, se ve que el área siempre incrementa, pero cómo podría demostrar que no hay área máxima?

Lo que intenté: Defini el punto $A = (x_0, y_0)$ tangente a la curva. Entonces la ecuación de la recta tangente a la curva que pasa por $A$ está dada por

$y - y_0 = f'(x_0)(x - x_0)$

$y - (4 - x_0^2) = -2x_0 (x - x_0)$ 

Ahora, para hallar la intersección de la recta con el eje $x$, pues hago $y = 0$

$0 - (4 - x_0^2) = -2x_0 (x - x_0)$ 

$4 - x_0^2 = 2x_o (x - x_0)$ 

$4 - x_0^2 = 2x x_0  - 2x_0^2$ 

$x = \frac{4 + x_o^2}{2x_0}$ 

De manera que la base del triángulo está dada por la diferencia

$b = \frac{4 + x_o^2}{2x_0} - x_0$ 

Y la altura está dada por 

$h = f(x_0) = 4 - x_0^2$

De manera que el área está dada por 

$A(x_0) = \frac{1}{2} b(x_0) h(x_0)$

Derivando y encuentro que los extremos relativos pueden ser en dos valores extraños, entonces concluyo que el área no tiene máximo (¿?). ¿Estoy bien en lo que he hecho? Espero puedan ayudarme. Gracias de antemano.

 

 

 

 

 

 

preguntado por Malexo (4,080 puntos) May 15, 2016 en Análisis real
editado por Malexo May 16, 2016
Licencia Creative Commons
Este obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 2.5 México.

powered by UCIM

...